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Abstract 
It has been shown that dimensionality reduction techniques 

can be applied to a large dataset of spectral reflectance to 
reconstruct the spectra by the linear model with a small number of 
basis functions. Principal Component Analysis (PCA) and 
Independent Component Analysis (ICA) are two popular 
techniques to perform the dimensionality reduction. For each 
technique, there are two approaches to perform the spectral 
reconstruction. One approach is to use the mean-centered data 
while another approach excludes the mean offset. This paper 
presents these four linear models mathematically. The colorimetric 
and spectral accuracy of the spectral reconstructions using the 
four models were compared. It was found that ICA had slightly 
better performance than PCA using not only the mean-centered 
data but also the data excluding the mean offset. More importantly, 
ICA without the mean had very close performance to PCA with the 
mean.  

Introduction 
It has been shown that spectral reflectance can be represented 

using a linear model with a limited number of dimensions [1-7]. 
That is, hundreds or thousands of reflectance spectra are described 
by a considerably smaller set of basis functions, termed statistical 
colorants by Tzeng and Berns [7]. Different linear models have 
been used for the spectral reflectance dimensionality reduction 
with varying results. Cohen was the first to analyze the 
characteristic spectra of the Munsell colors using Principal 
Component Analysis (PCA) [1]. Parkkinen, et al. [2] and Fairman, 
et al. [3] used similar methods for a larger dataset with 1257 
Munsell color chips. Laamanen, et al. [4] compared Independent 
Component Analysis (ICA) and PCA in color recognition using 
1269 reflectance spectra of the Munsell Color chips. Their results 
showed that ICA had better reconstruction performance than PCA 
with the same number of dimensions. Ramanath, et al. [5] used the 
same 1269 Munsell samples to perform the spectral dimensionality 
reduction using ICA, PCA, and Neural networks. They found that 
PCA performed better than ICA in reproducing the spectra of the 
samples. Given the inconsistent results, these analyses were 
repeated in this research. In addition, considering the fact that the 
traditional PCA and ICA use the mean-centered data while in some 
applications, the mean is discarded [7] the linear models of PCA 
and ICA without a mean offset are evaluated.  

Dimensionality Reduction Techniques 

Principal Component Analysis (PCA) 
Principal component analysis (PCA) is concerned with 

explaining the variance-covariance structure through a few linear 

combinations of the original variables [6]. Its goal is to find an 
uncorrelated representation of a set of correlated n-dimensional 
vectors. Given the spectral reflectance of one sample set, X , a 
n × q  matrix with n  spectral bands (wavelength) and q  number of 
samples. First, the variance-covariance matrix C  is computed as:  

C = 1

q
(X i

i=1

q

∑ − X )(X i − X )T

 (1) 
where X  is the mean spectrum of the sample set and T  is the 
matrix-vector transpose operation.  After n  eigenvectors 
(e1, e2,..., en )  of C  are obtained, the first m  (m < n )  principal 
components coordinates using and discarding the mean spectrum 
are given as the following 

Y = VT (X − X )  (2) 

Y* = VT X  (3) 
where the (n × m)  matrix V  an orthogonal matrix formed by the 
first m  (m < n )  eigenvectors. The spectral reflectance can be 
reconstructed using and discarding the mean spectrum respectively 
by 

ˆ X = X + VY = X + VVT (X − X )  (4) 

ˆ X * = VY* = VVT X  (5) 

Independent Component Analysis (ICA) 
Independent component analysis (ICA) is another technique 

for dimensionality reduction. Its goal is to produce basis functions 
that give rise to maximum statistical independence of the data [8]. 
When applying dimensionality reduction of spectral data, the 
model of ICA is given by 

X = AS  (6) 
where X  is a q × n  matrix with n  spectral bands (wavelength) 
and q  number of samples representing observed mixtures (linear 
combination of the original source signals and mixing matrix). S is 
a m × n  matrix with m  independent components (ICs) 
representing the original source signals. For the intent of the 
dimensionality reduction, m  is less than q . A  is a q × m  scalar 
matrix of mixing coefficients to construct X  from the various 
independent components.  

 ICA with the mean 
For the ICA approach using the mean-centered data, before 

attempting to estimate A  and S, both “centering” and “whitening” 
preprocessing are performed. First, the obtained data X  are 
centered by subtracting their mean value X  to make X  zero-
mean.  
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X = X − X  (8) 
where X  is a 1× q vector. It should be noted that in this case the 
mean vector is not the mean spectrum as in PCA since q  
represents the number of the samples in the dataset. That is, it has 
not a physical interpretation in terms of spectral reflectance. Then 
the centered data are whitened, which means they are linearly 
transformed so that the components are uncorrelated and have unit 
variance. “Whitening” can be performed via eigenvalue 
decomposition of the covariance matrix 

  

E{
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X 
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X T } = UDUT . U  is 
here the orthogonal matrix of eigenvectors of 

  

E{
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X 
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X T } and D  is 
the diagonal matrix of its eigenvalues. Whitening can now be done 
by 
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X = D−1/2UT
r 

X  (9) 
In addition to simplifying the ICA algorithm, whitening can 

also perform the dimensionality reduction at the same time. When 
calculating the whitening matrix D−1/ 2UT , first m  largest 
eigenvalues and corresponding eigenvector of 

  

E{
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X T }  are 
selected and the rest are discarded, as in often done in PCA. That 
is, D = diag(d1,d2 ,...dm ) and U  now is the orthogonal matrix with 
m  eigenvectors. So far, we can see that PCA is the preprocessing 
of ICA. In this case, 

  

t 

X  is the centered and whitened data, which is 
a m × n  matrix. The number of dimensions is reduced from q  to 
m  rather than from n  to m  in PCA.  

After the preprocessing of the data, the ICA algorithm is 
performed. There are many different algorithms such as CoBliss, 
FastICA, and JADE. The JADE algorithm (Joint Approximate 
Diagonalization of Eigenvalues) [9, 10] was used in Laamanen’s 
approach as well as the new approach in this research. The direct 
output of the JADE algorithm is the separation matrix B, which is 
the inverse of mixing matrix A .  The independent components 
m × n  matrix S is estimated by 

  
S = B

r 

X  (10) 
In this approach, the independent components are used as the m  
basis functions to form the new coordinate system. The original 
data could be reconstructed by  

  ̂

 X = ST S
r 

X + X  (11) 

ICA without the mean 
Considering the fact that the mean vector has no physical 

interpretation in terms of spectral reflectance, the original data 
without a mean vector offset can be used to perform ICA in this 
new approach. The “whitening” preprocessing is also required to 
perform the dimensionality reduction, as shown in the following: 

  

t 

X = D−1/2UT X  (12) 
where X  is the original data, D = diag(d1,d2 ,...dm ) and U  is the 
orthogonal matrix with m  eigenvectors coming from E{XXT } .  

Applying the same JADE algorithm as the approach of ICA 
with the mean, the independent components m × n  matrix S is 
estimated by 

S = BX  (13) 

 
 
The spectral reconstruction can be performed by 

ˆ X = ST SX  (14) 

Results and Discussions 
In this study, 1269 reflectance spectra of the chips in the 

Munsell Book of Color-Matte Finish Collection defined the data 
set [11]. The wavelength range was from 400 nm to 700 nm with 
10 nm intervals. That is, the number of spectral bands n  equaled 
31 and the number of samples q  was 1269. The three basis 
functions of the Munsell data set from PCA and the two ICA 
approaches are shown in Figures 1, 2, and 3, respectively.  
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Figure 1. The three basis functions of the Munsell spectral dataset from PCA 
and the mean spetrum of the Munsell spectral dataset. 
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Figure 2. The three basis functions of the Munsell spectral dataset from ICA 
with the mean.  
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Figure 3. The three basis functions of the Munsell spectral dataset from ICA 
without the mean. 

The three basis functions of the Munsell spectral dataset using 
PCA and ICA with the mean are consistent with that in the 
literature but the opposite signs in some basis functions and 
different normalization. For PCA, since the covariance matrix of 
the mean-centered data and un-mean-centered data is identical, two 
approaches have the same eigenvectors. For ICA, it’s goal is to 
seeks directions in feature such that the resulting signal show 
independence, so the mean-centered data would result in different 
independence components from that of the data without a mean 
offset. Comparing Figure 2 and 3, two sets of basis functions are 
different. Interestingly, the basis functions from ICA without the 
mean are very similar to that of PCA. 

The average colorimetric and spectral accuracy of spectral 
reconstruction using the various dimensionality reduction 
techniques is listed in Table 1. The colorimetric accuracy was 
calculated using CIEDE2000 for 1931 standard observer under 
illuminant D65. The spectral accuracy is expressed by the RMS of 
spectral reflectance [12].  
 

Table 1: The average colorimetric and spectral accuracy of the spectral reconstruction for the Munsell dataset with different number 
of basis functions from PCA and ICA.

 PCA with mean PCA without mean ICA with mean 

Function 
number 

DE2000  
(D65, 20) 

RMS 
Spectral 
Error 

DE2000 (D65, 20) 
RMS 
Spectral 
Error 

DE2000  
(D65, 20) 

RMS 
Spectral 
Error 

1 16.20 0.077 17.43 0.080 12.02 0.044 

2 12.01 0.042 12.47 0.043 1.97 0.023 

3 2.18 0.019 1.91 0.021 1.70 0.016 

4 1.22 0.013 1.37 0.015 0.64 0.012 

5 0.56 0.009 0.76 0.012 0.24 0.008 

6 0.56 0.008 0.76 0.011 0.23 0.006 

7 0.12 0.006 0.16 0.007 0.13 0.005 

8 0.10 0.004 0.15 0.007 0.10 0.003 

9 0.09 0.003 0.12 0.004 0.08 0.003 

10 0.06 0.002 0.08 0.003 0.08 0.002 

11 0.05 0.002 0.07 0.002 0.02 0.002 

12 0.05 0.002 0.08 0.002 0.01 0.002 

13 0.01 0.001 0.01 0.002 0.01 0.001 

14 0.01 0.001 0.01 0.001 0.01 0.001 

15 0.01 0.001 0.01 0.001 0.01 0.001 

16 0.01 0.001 0.01 0.001 0.01 0.001 

17 0.00 0.001 0.00 0.001 0.00 0.001 

18 0.00 0.001 0.00 0.001 0.00 0.001 

19 0.00 0.001 0.00 0.001 0.00 0.001 

20 0.00 0.001 0.00 0.001 0.00 0.001 

21 0.00 0.001 0.00 0.001 0.00 0.001 

22 0.00 0.001 0.00 0.001 0.00 0.001 

23 0.00 0.001 0.00 0.001 0.00 0.001 

24 0.00 0.001 0.00 0.001 0.00 0.000 

25 0.00 0.000 0.00 0.001 0.00 0.000 



The spectral reconstruction for an arbitrary sample in the 
Munsell data set using the derived three basis functions from PCA 
and ICA, are plotted in Figure 4. 
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Figure 4. An example of the spectral reconstruction using three basis 
functions from PCA and ICA. 

It is obvious that both PCA and ICA built effective linear 
models for spectral reflectance dimensionality reduction. That is, 
using a small number of basis functions, the spectral reflectance of 
the dataset can be reconstructed with tolerable accuracy.  

For both PCA and ICA, the spectral reconstruction 
performance with the mean was better than that without the mean 
using the same number of basis functions. However, if the mean 
spectrum was treated as a basis function, the results of PCA 
without the mean would be better than that of PCA with the mean 
using the same number of basis functions. However, when the 
number of functions is larger than two, the difference becomes 
very small. 

For the mean-centered data, ICA has the better spectral 
reconstruction performance than PCA. This conclusion is 
consistent with the result of Laamanen, et al, however, opposite to 
that of Ramanath, et al. For the data without a mean offset, ICA 
also has smaller spectral reconstruction accuracy than PCA. 

A significant result is that ICA without the mean has very 
close performance to PCA with the mean. The latter needs to know 
the mean spectrum of the dataset before reconstructing it. This 
indicates that in order to obtain the same spectral reconstruction, 
there is an extra parameter to know for PCA with the mean 
comparing with ICA without the mean.  

Conclusions 
Four linear models for spectral reflectance dimensionality 

reduction using PCA and ICA were evaluated in terms of spectral 
reconstruction accuracy. Three basis functions are enough to 
reconstruct the measured data with tolerable accuracy. The 
comparison between PCA and ICA shows ICA has slightly better 
performance than PCA using not only the mean-centered data but 
also the un-mean-centered data. Although ICA with the mean 
performs better than other models, the mean vector has no physical 
interpretation in terms of spectral reflectance. In addition, ICA 
without the mean has very close performance to PCA with the 

mean, which require an extra parameter. So for the purpose of 
dimensionality reduction and data compression, ICA without the 
mean is a better approach than the other three models. 
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